La velocidad de la luz (I)

En el vacío es una constante universal que utilizando las unidades internacionales tiene el valor de 299 792 456 metros por segundo, aunque suele aproximarse a 3 × 108 m/s, en lenguaje común 300 000 kilómetros por segundo.

Se simboliza con la letra , proveniente del latín celéritās (en español, ‘celeridad’ o ‘rapidez’).

El valor de la velocidad de la luz en el vacío fue incluido oficialmente en el Sistema Internacional de Unidades como constante el 21 de octubre de 1983, pasando así el metro a ser una unidad derivada de esta constante.

También se emplea en la definición del año luz, unidad de longitud equivalente a 9.46 × 1015 m, ya que la velocidad de la luz también se puede expresar como

9.46 × 1015 m/año.

La rapidez a través de un medio que no sea el «vacío» depende de su permitividad eléctrica, de su permeabilidad magnética, y otras características electromagnéticas. En medios materiales, esta velocidad es inferior a y queda codificada en el índice de refracción.

En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.

De acuerdo con la física moderna toda radiación electromagnética (incluida la luz visible) se propaga o mueve con una rapidez constante en el vacío, conocida aunque impropiamente] como «velocidad de la luz» (magnitud vectorial), en vez de «rapidez de la luz» (magnitud escalar).

Esta es una constante física denotada como c.

La rapidez c es también la rapidez de la propagación de la gravedad en la teoría general de la relatividad.

Una consecuencia que se obtiene a partir de las leyes del electromagnetismo (tales como las ecuaciones de Maxwell) es que la rapidez c de la radiación electromagnética no depende de la rapidez del objeto que emite tal radiación.

Así, por ejemplo, la luz emitida por una fuente de luz que se mueve muy rápidamente, viajaría con la misma rapidez que la luz proveniente de una fuente estacionaria (aunque el color, la frecuencia, la energía y el momentum de la luz cambiarán; fenómeno que se conoce como efecto Doppler).

Si se combina esta observación con el principio de relatividad, se concluye que todos los observadores medirán la rapidez de la luz en el vacío como una misma cantidad, sin importar el marco de referencia del observador o la rapidez del objeto que emite la luz.

Debido a esto, se puede ver a c como una constante física fundamental.

Este hecho, entonces, puede ser usado como base en la teoría de la relatividad especial.

La constante es la rapidez c, en vez de la luz en sí misma, lo cual es fundamental para la relatividad especial.

De este modo, si la luz es de alguna manera retardada para viajar a una rapidez menor de c, esto no afectará directamente a la teoría de la relatividad especial.

Observadores que viajan con gran rapidez encontrarán que las distancias y los tiempos se distorsionan de acuerdo con la transformación de Lorentz.

Sin embargo, las transformaciones distorsionan tiempos y distancias de manera que la rapidez de la luz permanece constante.

Una persona viajando con una rapidez cercana a c también encontrará que los colores de la luz al frente se tornan azules y atrás se tornan rojos.

Si la información pudiese viajar más rápido que c en un marco de referencia, la causalidad sería violada: en otros marcos de referencia, la información sería recibida antes de ser mandada; así, la causa podría ser observada después del efecto.

Debido a la dilatación del tiempo de la relatividad especial, el cociente del tiempo percibido entre un observador externo y el tiempo percibido por un observador que se mueve cada vez más cerca de la rapidez de la luz se aproxima a cero. Si algo pudiera moverse más rápidamente que la luz, este cociente no sería un número real. Tal violación de la causalidad nunca se ha observado.

Cono de luz. iagrama espacio-tiempo, que permite dilucidar la posible causalidad entre el suceso A y el suceso B (posible causalidad) y entre el suceso A y el suceso C (causalidad imposible)

Un cono de luz define la ubicación que está en contacto causal y aquellas que no lo están.

Para exponerlo de otro modo, la información se propaga de y hacia un punto de regiones definidas por un cono de luz.

El intervalo AB en el diagrama a la derecha es de «tipo tiempo» (es decir, hay un marco de referencia en el que los acontecimientos A y B ocurren en la misma ubicación en el espacio, separados solamente por su ocurrencia en tiempos diferentes, y si A precede a B en ese marco entonces A precede a B en todos los marcos: no hay marco de referencia en el cual el evento A y el evento B ocurren simultáneamente).

De este modo, es hipotéticamente posible para la materia (o la información) viajar de A hacia B, así que puede haber una relación causal (con A la causa y B el efecto).

Sin embargo, también existen marcos en los que A precede a C, o en los que C precede a A. Confinando una manera de viajar más rápido que la luz, no será posible para ninguna materia (o información) viajar de A hacia C o de C hacia A.

De este modo no hay conexión causal entre A y C.

En acuerdo con la definición actual, adoptada en 1983, la rapidez de la luz es exactamente 299 792 458 m/s (aproximadamente 3 × 108 metros por segundo, 300 000 km/s o 300 m por millonésima de s).

El valor de c define la permitividad eléctrica del vacío ( ) en unidades del SIU como:

La permeabilidad magnética del vacío ( ) no es dependiente de c y es definida en unidades del SIU como:

.

Estas constantes aparecen en las ecuaciones de Maxwell, que describen el electromagnetismo y están relacionadas por:

Las distancias astronómicas son normalmente medidas en años luz (que es la distancia que recorre la luz en un año, aproximadamente 9.46 × 1012 km (9.46 billones de km).

Históricamente, el metro había sido definido como la diezmillonésima parte de la longitud del arco de meridiano terrestre comprendido entre el polo norte y el ecuador a través de París, con referencia a la barra estándar, y con referencia a una longitud de onda de una frecuencia particular de la luz.

En 1967 la XIII Conferencia General de Pesos y Medidas definió el segundo del tiempo atómico como la duración de 9 192 631 770  períodos de radiación correspondiente a la transición entre dos niveles hiperfinos del estado fundamental del átomo cesio-133, que en la actualidad sigue siendo la definición del segundo.

En 1983 la Conferencia General de Pesos y Medidas resolvió modificar la definición del metro como unidad de longitud del Sistema Internacional, estableciendo su definición a partir de la velocidad de la luz:

.

En consecuencia, este reajuste efectuado en la definición del metro permite que la velocidad de la luz tenga un valor exacto de 299 792 458 m/s cuando se expresa en metros/segundo. Esta modificación aprovecha de forma práctica una de las bases de la teoría de la relatividad de Einstein, que establece que la magnitud de la velocidad de la luz en el vacío es independiente del sistema de referencia utilizado para medirla.

La motivación en el cambio de la definición del metro, así como todos los cambios en la definición de unidades, fue proveer una definición precisa de la unidad que pudiese ser fácilmente usada para calibrar homogéneamente dispositivos en todo el mundo.

La barra estándar no era práctica en este sentido, ya que no podía ser sacada de su cámara o utilizada por dos científicos al mismo tiempo. También era propensa a cambios significativos en su longitud debido a variaciones de temperatura, desgaste de los extremos, oxidación, etc., incompatible con la exactitud necesaria para establecer una de las unidades básicas del Sistema Internacional de unidades.

Tiempos de retardo de la señal GPS en función de la distancia de los satélites al observador, lo que permite calcular su posición

La rapidez de la luz es de gran importancia para las telecomunicaciones.

Por ejemplo, dado que el perímetro de la Tierra es de 40 075 km (en la línea ecuatorial) y c es teóricamente la velocidad más rápida en la que un fragmento de información puede viajar, el período más corto de tiempo para llegar al otro extremo del globo terráqueo sería 0.067 s.

En realidad, el tiempo de viaje es un poco más largo, en parte debido a que la velocidad de la luz es cerca de un 30 % menor en una fibra óptica, y raramente existen trayectorias rectas en las comunicaciones globales; además se producen retrasos cuando la señal pasa a través de interruptores eléctricos o generadores de señales.

En 2004, el retardo típico de recepción de señales desde Australia o Japón hacia los Estados Unidos era de 0.18 s.

Adicionalmente, la velocidad de la luz afecta al diseño de las comunicaciones inalámbricas.

La velocidad finita de la luz se hizo aparente a todo el mundo en el control de comunicaciones entre el Control Terrestre de Houston y Neil Armstrong, cuando este se convirtió en el primer hombre que puso un pie sobre la Luna: después de cada pregunta, Houston tenía que esperar cerca de 3 s para el regreso de una respuesta aun cuando los astronautas respondían inmediatamente.

De manera similar, el control remoto instantáneo de una nave interplanetaria es imposible debido a que una nave suficientemente alejada de nuestro planeta podría tardar algunas horas desde que envía información al centro de control terrestre y recibe las instrucciones.

NO SE DEBE SER DÉBIL, SI SE QUIERE SER LIBRE

 

 



Esta nota ha sido leída aproximadamente 164 veces.



Antonio Daza


Visite el perfil de Antonio Daza para ver el listado de todos sus artículos en Aporrea.


Noticias Recientes: