El agua u oxidano (H2O) es un compuesto químico inorgánico formado por dos átomos de hidrógeno (H) y uno de oxígeno (O).
Esta molécula es esencial en la vida de los seres vivos, al servir de medio para el metabolismo de las biomoléculas, se encuentra en la naturaleza en sus tres estados y fue clave para la formación.de la tierra.-
El agua (del latín aqua) es una sustancia cuya molécula está compuesta por dos átomos de hidrógeno y uno de oxígeno (H2O) unidos por un enlace covalente.aunque a temperaturas de menos 100°C se presenta en dos liquidos de diferentes densidades, por lo que se presume que el agua no es un líquido sino dos en uno con características diferentes.
El término agua, generalmente, se refiere a la sustancia en su estado líquido, aunque esta puede hallarse en su forma sólida, llamada hielo, y en su forma gaseosa, denominada vapor de agua componente principal de la capa superior que gravita sobre la tierra la troposfera y que es laxona donde se genera el clima.-.
Es una sustancia bastante común en la Tierra y el sistema solar, donde se encuentra principalmente en forma de vapor o de hielo. Es indispensable para el origen y sustento de la vida.
El agua cubre el 71 % de la superficie de la corteza terrestre Se localiza principalmente en los océanos y ríos, donde se concentra el 96,5 % del total.
A los glaciares y casquetes polares les corresponde el 1,74 %, mientras que los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales concentran el 1,72 %.
El restante 0,04 % es el agua dulce disponible en el planeta, de la cual depende la vida en el mismo, que se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos.
La vida en la Tierra está directamente relacionada con el agua, incluyendo al ser humano, cuyo cuerpo contiene entre un 45 % y un 73 % de agua corporal.(leer el libro del agua requerimientos del organismo )
El agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación y desplazamiento hacia el mar, llamado el ciclo del agua
Los vientos la transportan como vapor de agua o gotitas en suspensión (nubes) desde el mar, en una cantidad aproximada de 45 000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74 000 km³ anuales, por lo que las precipitaciones totales son de 119 000 km³ cada año.5
Se estima que aproximadamente el 70 % del agua dulce se destina a la agricultura El agua en la industria absorbe una media del 20 % del consumo mundial, empleándose en tareas de refrigeración, transporte y como disolvente en una gran variedad de procesos industriales.
El consumo doméstico absorbe el 10 % restante.7 El acceso al agua potable se ha incrementado durante las últimas décadas en prácticamente todos los países. Sin embargo, estudios de la FAO estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes de 2030; en esos países es vital un menor gasto de agua en la agricultura, modernizando los sistemas de riego.7
Propiedades físicas y químicas]
La geometría de la molécula de agua es la causante de una buena parte de sus propiedades, por su elevada constante dieléctrica y actuar como dipolo.
|
El agua es una sustancia que químicamente se formula como H2O, es decir, que una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno.
Fue Henry Cavendish quien descubrió en 1782 que el agua es una sustancia compuesta y no un elemento, como se pensaba desde la antigüedad.
Los resultados de dicho descubrimiento fueron desarrollados por Antoine Laurent de Lavoisier, dando a conocer que el agua está formada por oxígeno e hidrógeno.
En 1804, el químico francés Louis Joseph Gay-Lussac y el naturalista y geógrafo alemán Alexander von Humboldt demostraron que el agua estaba formada por dos volúmenes de hidrógeno por cada volumen de oxígeno (H2O)
Actualmente se sigue investigando sobre la naturaleza de este compuesto y sus propiedades, a veces traspasando los límites de la ciencia convencional.
En este sentido, el investigador John Emsley, divulgador científico, dijo del agua que «(Es) una de las sustancias químicas más investigadas, pero sigue siendo la menos entendida».
El agua es un líquido en el rango de temperaturas y presiones más adecuado para las formas de vida conocidas: a la presión de 1 atm, el agua es líquida entre las temperaturas de 273,15 K (0 °C) y 373,15 K (100 °C). Los valores para el calor latente de fusión y de vaporización son de 0,334 kJ/g y 2,23 kJ/g respectivamente.
Al aumentar la presión, disminuye ligeramente el punto de fusión, que es de aproximadamente −5 °C a 600 atm y −22 °C a 2100 atm.
Este efecto es el causante de la formación de los lagos subglaciales de la Antártida y contribuye al movimiento de los glaciares.
A presiones superiores a 2100 atm el punto de fusión vuelve a aumentar rápidamente y el hielo presenta configuraciones exóticas que no existen a presiones más bajas.
Las diferencias de presión tienen un efecto más dramático en el punto de ebullición, que es aproximadamente 374 °C a 220 atm, mientras que en la cima del Monte Everest, donde la presión atmosférica es de alrededor de 0,34 atm, el agua hierve a unos 70 °C.
El aumento del punto de ebullición con la presión se puede presenciar en las fuentes hidrotermales de aguas profundas, y tiene aplicaciones prácticas, como las ollas a presión y motores de vapor.
La temperatura crítica, por encima de la cual el vapor no puede licuarse al aumentar la presión es de 373,95 °C (647,10 K).17
A presiones por debajo de 0,006 atm, el agua no puede existir en el estado líquido y pasa directamente del sólido al gas por sublimación, fenómeno explotado en la liofilización de alimentos y compuestos
A presiones por encima de 221 atm, los estados de líquido y de gas ya no son distinguibles, un estado llamado agua supercrítica.
En este estado, el agua se utiliza para catalizar ciertas reacciones y tratar residuos orgánicos.
La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión. A la presión de una atmósfera, la densidad mínima del agua líquida es de 0,958 kg/L, a los 100 °C.
Al bajar la temperatura, aumenta la densidad constantemente hasta llegar a los 3,8 °C donde alcanza una densidad máxima de 1 kg/L
. A temperaturas más bajas, a diferencia de otras sustancias, la densidad disminuye.19 A los 0 °C, el valor es de 0,9999 kg/L; al congelarse, la densidad experimenta un descenso más brusco hasta 0,917 kg/L, acompañado por un incremento del 9 % en volumen, lo que explica el hecho de que el hielo flote sobre el agua líquida.
Sabor, olor y aspecto
El agua como tal no tiene olor, ni color ni sabor, sin embargo, el agua en la Tierra contiene minerales y sustancias orgánicas en disolución que le pueden aportar sabores y olores más o menos detectables según la concentración de los compuestos y la temperatura del agua.
El agua puede tener un aspecto turbio si contiene partículas en suspensión.
La materia orgánica presente en el suelo, como los ácidos húmicos y fúlvicos, también imparte color, así como la presencia de metales, como el hierro.
En la ausencia de contaminantes, el agua líquida, sólida o gaseosa apenas absorbe la luz visible, aunque en el espectrógrafo se prueba que el agua líquida tiene un ligero tono azul verdoso. El hielo también tiende al azul turquesa. El color que presentan las grandes superficies de agua es en parte debido a su color intrínseco, y en parte al reflejo del cielo Por el contrario, el agua absorbe fuertemente la luz en el resto del espectro, procurando protección frente a la radiación ultravioleta
Propiedades moleculares
Cada molécula de agua se compone de dos átomos de hidrógeno unidos por enlaces covalentes a un átomo de oxígeno.
A su vez las distintas moléculas de agua se unen por unos enlaces por puentes de hidrógeno.
Estos enlaces por puentes de hidrógeno entre las moléculas del agua son responsables de la dilatación térmica del agua al solidificarse, es decir, de su aumento de volumen al congelarse
.El impacto de una gota sobre la superficie del agua provoca unas ondas características, llamadas ondas capilares.Acción capilar del agua y el mercurio, que produce la variación en la altura de las columnas de cada líquido y forma diferentes meniscos en el contacto con las paredes del recipiente.Estas gotas se forman por la elevada tensión superficial del agua.
La molécula de agua adopta una geometría no lineal, con los dos átomos de hidrógeno formando un ángulo de 104,45 grados entre sí.
Esta configuración, junto con la mayor electronegatividad del átomo de oxígeno, le confieren polaridad a la molécula, cuyo momento dipolar eléctrico es de 6,2 × 10−30 C m.
La polaridad de la molécula de agua da lugar a fuerzas de Van der Waals y la formación de hasta cuatro enlaces de hidrógeno con moléculas circundantes.
Estos enlaces moleculares explican la adhesividad del agua, su elevado índice de tensión superficial y su capilaridad, que es responsable de la formación de ondas capilares, permite a algunos animales desplazarse sobre la superficie del agua y contribuye al transporte de la savia contra la gravedad en las plantas vasculares, como los árboles.
La presencia en el agua de ciertas sustancias surfactantes, como jabones y detergentes, reduce notablemente la tensión superficial del agua y facilita la retirada de la suciedad adherida a objetos
Los puentes de hidrógeno entre las moléculas de agua también son responsables de los elevados puntos de fusión y ebullición comparados con los de otros compuestos de anfígeno e hidrógeno, como el sulfuro de hidrógeno.
Asimismo, explican los altos valores de la capacidad calorífica —4,2 J/g/K, valor solo superado por el amoníaco—, el calor latente y la conductividad térmica —entre 0,561 y 0,679 W/m/K—.
Estas propiedades le dan al agua un papel importante en la regulación del clima de la Tierra, mediante el almacenamiento del calor y su transporte entre la atmósfera y los océanos
Otra consecuencia de la polaridad del agua es que, en estado líquido, es un disolvente muy potente de muchos tipos de sustancias distintas.
Las sustancias que se mezclan y se disuelven bien en agua —como las sales, azúcares, ácidos, álcalis y algunos gases (como el oxígeno o el dióxido de carbono, mediante carbonación)— son llamadas hidrófilas, mientras que las que no combinan bien con el agua —como lípidos y grasas— se denominan sustancias hidrófobas. Igualmente, el agua es miscible con muchos líquidos, como el etanol, y en cualquier proporción, formando un líquido homogéneo.
Puede formar azeótropos con otros disolventes, como el etanol o el tolueno.30 Por otra parte, los aceites son inmiscibles con el agua, y forman capas de variable densidad sobre su superficie. Como cualquier gas, el vapor de agua es miscible completamente con el aire.
Propiedades eléctricas y magnéticas
El agua tiene una constante dieléctrica relativamente elevada (78,5 a 298 K o 25 °C) y las moléculas de sustancias con carga eléctrica se disocian fácilmente en ella.3
La presencia de iones disociados incrementa notablemente la conductividad del agua que, por el contrario, se comporta como un aislante eléctrico en estado puro.
El agua puede disociarse espontáneamente en iones hidronios H3O+ e hidróxidos OH-. La constante de disociación Kw es muy baja —10−14 a 25 °C—, lo que implica que una molécula de agua se disocia aproximadamente cada diez horas.
El pH del agua pura es 7, porque los iones hidronios e hidróxidos se encuentran en la misma concentración. Debido a los bajos niveles de estos iones, el pH del agua varía bruscamente si se disuelven en ella ácidos o bases.
Es posible separar el agua líquida en sus dos componentes hidrógeno y oxígeno haciendo pasar por ella una corriente eléctrica, mediante electrólisis.
La energía requerida para separar el agua en sus dos componentes mediante este proceso es superior a la energía desprendida por la recombinación de hidrógeno y oxígeno.
El agua líquida pura es un material diamagnético y es repelida por campos magnéticos muy intensos.
Propiedades mecánicas
El agua líquida puede considerarse a efectos prácticos como incompresible, efecto que es aprovechado en las prensas hidráulicas;
En condiciones normales, su compresibilidad abarca valores desde 4,4 hasta 5,1 × 10−10 Pa−1.37 Incluso a profundidades de 2 km, donde la presión alcanza unas 200 atm, el agua experimenta una disminución de volumen de solo un 1 %.
La viscosidad del agua es de unos 10−3 Pa·s o 0,01 poise a 20 °C, y la velocidad del sonido en agua líquida varía entre los 1400 y 1540 m/s, dependiendo de la temperatura.
El sonido se trasmite en el agua casi sin atenuación, sobre todo a frecuencias bajas; esta propiedad permite la comunicación submarina a largas distancias entre los cetáceos y es la base de la técnica del sonar para detectar objetos bajo el agua.
No se debe ser débil, si se quiere ser libre