Energía potencial mínima.
En este apartado, se estudia el principio de Arquímedes como un ejemplo, de cómo la Naturaleza busca minimizar la energía.
|
|
|
Supongamos un cuerpo en forma de paralepípedo de altura h, sección A y de densidad ρs. El fluido está contenido en un recipiente de sección S hasta una altura b. La densidad del fluido es ρf> ρs.
Se libera el cuerpo, oscila hacia arriba y hacia abajo, hasta que alcanza el equilibrio flotando sobre el líquido sumergido una longitud x. El líquido del recipiente asciende hasta una altura d. Como la cantidad de líquido no ha variado S·b=S·d-A·x
Hay que calcular x, de modo que la energía potencial del sistema formado por el cuerpo y el fluido sea mínima.
Tomamos el fondo del recipiente como nivel de referencia de la energía potencial.
El centro de masa del cuerpo se encuentra a una altura d-x+h/2. Su energía potencial es Es=(ρs·A·h)g(d-x+h/2)
Para calcular el centro de masas del fluido, consideramos el fluido como una figura sólida de sección S y altura d a la que le falta una porción de sección A y altura x.
- El centro de masas de la figura completa, de volumen S·d es d/2
- El centro de masas del hueco, de volumen A·x, está a una altura (d-x/2)
La energía potencial del fluido es Ef=ρf(Sb)g·yf
La energía potencial total es Ep=Es+Ef
El valor de la constante aditiva cte, depende de la elección del nivel de referencia de la energía potencial.
En la figura, se representa la energía potencial Ep(x) para un cuerpo de altura h=1.0, densidad ρs=0.4, parcialmente sumergido en un líquido de densidad ρf=1.0.
La función presenta un mínimo, que se calcula derivando la energía potencial con respecto de x e igualando a cero
En la posición de equilibrio, el cuerpo se encuentra sumergido
Energía potencial de un cuerpo que se mueve en el seno de un fluido
|
|
Cuando un globo de helio asciende en el aire actúan sobre el globo las siguientes fuerzas:
|
Dada la fuerza conservativa podemos determinar la fórmula de la energía potencial asociada, integrando
- La fuerza conservativa peso Fg=–mgj está asociada con la energía potencial Eg=mg·y.
- Por la misma razón, la fuerza conservativa empuje Fe= rVg j está asociada a la energía potencial Ee=-rfVg·y.
Dada la energía potencial podemos obtener la fuerza conservativa, derivando
La energía potencial asociada con las dos fuerzas conservativas es
Ep=(mg- rfVg)y
A medida que el globo asciende en el aire con velocidad constante experimenta una fuerza de rozamiento Fr debida a la resistencia del aire. La resultante de las fuerzas que actúan sobre el globo debe ser cero.
rf Vg- mg-Fr=0
Como rfVg> mg a medida que el globo asciende su energía potencial Ep disminuye.
Empleando el balance de energía obtenemos la misma conclusión
El trabajo de las fuerzas no conservativas Fnc modifica la energía total (cinética más potencial) de la partícula. Como el trabajo de la fuerza de rozamiento es negativo y la energía cinética Ek no cambia (velocidad constante), concluimos que la energía potencial final EpB es menor que la energía potencia inicial EpA.
En la página titulada "movimiento de un cuerpo en el seno de un fluido ideal", estudiaremos la dinámica del cuerpo y aplicaremos el principio de conservación de la energía.
Energía potencial de un cuerpo parcialmente sumergido
En el apartado anterior, estudiamos la energía potencial de un cuerpo totalmente sumergido en un fluido (un globo de helio en la atmósfera). Ahora vamos a suponer un bloque cilíndrico que se sitúa sobre la superficie de un fluido (por ejemplo agua).
Pueden ocurrir dos casos:
- Que el bloque se sumerja parcialmente si la densidad del cuerpo sólido es menor que la densidad del fluido, rs< rf.
- Que el cuerpo se sumerja totalmente si rs³ rf.
Cuando el cuerpo está parcialmente sumergido, sobre el cuerpo actúan dos fuerzas el peso mg=rsSh·g que es constante y el empuje rfSx·g que no es constante. Su resultante es
F=(-rsShg+rfSxg)j.
Donde S el área de la base del bloque, h la altura del bloque y x la parte del bloque que está sumergida en el fluido.
Tenemos una situación análoga a la de un cuerpo que se coloca sobre un muelle elástico en posición vertical. La energía potencial gravitatoria mgy del cuerpo disminuye, la energía potencial elástica del muelle kx2/2 aumenta, la suma de ambas alcanza un mínimo en la posición de equilibrio, cuando se cumple –mg+kx=0, cuando el peso se iguala a la fuerza que ejerce el muelle.
El mínimo de Ep se obtiene cuando la derivada de Ep respecto de y es cero, es decir en la posición de equilibrio.
La energía potencial del cuerpo parcialmente sumergido será, de forma análoga
El mínimo de Ep se obtiene cuando la derivada de Ep respecto de y es cero, es decir, en la posición de equilibrio, cuando el peso se iguale al empuje. -rsShg+rfSxg=0
El bloque permanece sumergido una longitud x. En esta fórmula, se ha designado r como la densidad relativa del sólido (respecto del fluido) es decir, la densidad del sólido tomando la densidad del fluido como la unidad.
Fuerzas sobre el bloque
- Cuando r <1 o bien rs< rf, el cuerpo permanece parcialmente sumergido en la situación de equilibrio.
- Cuando r >1 o bien rs> rf, el peso es siempre mayor que el empuje, la fuerza neta que actúa sobre el bloque es
Fy=-rsShg+rfShg<0.
No existe por tanto, posición de equilibrio, el bloque cae hasta que llega al fondo del recipiente que supondremos muy grande.
-
Cuando r =1 o bien rs= rf, El peso es mayor que el empuje mientras el bloque está parcialmente sumergido (x
).
Fy=-r Shg+r Sxg<0.
La fuerza neta que actúa sobre el bloque cuando está completamente sumergido (x³ h) es cero, y cualquier posición del bloque, completamente sumergido en el seno del fluido, es de equilibrio.
Curvas de energía potencial
- La energía potencial correspondiente a la fuerza conservativa peso es
Eg= rsShgy
- La energía potencial correspondiente a la fuerza de empuje tiene dos partes
-
Mientras el cuerpo está parcialmente sumergido (x
)
Que corresponde al área del triángulo de la figura de la izquierda.
- Cuando el cuerpo está totalmente sumergido (x³ h)
Que corresponde a la suma del área de un triángulo de base h, y la de un rectángulo de base x-h.
- La energía potencial total es la suma de las dos contribuciones
Ep=Eg+Ef
Cuando la densidad del sólido es igual a la del fluido rs= rf, la energía potencial total Ep es constante e independiente de x (o de y) para x³ h como puede comprobarse fácilmente.
NO SE DEBE SER DÉBIL SI SE QUIERE SER LIBRE